关键词 |
宏隆环保碳分子筛回收,抚顺碳分子筛回收,宏隆环保碳分子筛回收,碳分子筛回收流程 |
面向地区 |
变压吸附空分制氧始创于20世纪60年代初(Skarstrom, 1960; Guerin de Montgarenil & Domine, 1964),并于70年代实现工业化生产。在此之前,传统的工业空分装置大部分采用深冷精馏法(简称深冷法)
80年代以来至今CaX和LiX等高吸附分离性能的沸石分子筛的相继开发利用和工艺流程的改进,使得变压吸附空分技术得到迅速地发展,与深冷空分装置相比,PSA过程具有启动时间短和开停车方便、能耗较小和运行成本低、自动化程度高和维护简单、占地面积小和土建费用低等特点。在不需要高纯氧的中小规模(小于100吨/天,相当于3000Nm3/h )氧气生产中比深冷法更具有竞争力。广泛的应用于电炉炼钢、有色金属冶炼、玻璃加工、甲醇生产、炭黑生产、化肥造气、化学氧化过程、纸浆漂白、污水处理、生物发酵、水产养殖、医疗和军事等诸多领域(杨,1991; Kumar, 1996; Jee, Park, Haam & Lee,2002)。
常用的空气分离方法是低温精馏法分离。低温分离方法通过压缩循环深度冷冻的方法把空气变成液态,经过低温精馏根据不同沸点而从液态空气中逐步分离生产出氧气、氮气及氩气等惰性气体的设备,广泛应用于传统的冶金、新型煤化工、大型氮肥、气体供应等领域。
碳分子筛可以同时吸附空气中的氧和氮,其吸附量也随着压力的升高而升高,而且在同一压力下氧和氮的平衡吸附量无明显的差异。因而,仅凭压力的变化很难完成氧和氮的有效分离。如果进一步考虑吸附速度的话,就能将氧和氮的吸附特性有效地区分开来。氧分子直径比氮分子小,因而扩散速度比氮快数百倍,故碳分子筛吸附氧的速度也很快,吸附约1分钟就达到90%以上;而此时氮的吸附量仅有5%左右,所以此时吸附的大体上都是氧气,而剩下的大体上都是氮气。这样,如果将吸附时间控制在1分钟以内的话,就可以将氧和氮初步分离开来,也就是说,吸附和解吸是靠压力差来实现的,压力升高时吸附,压力下降时解吸。而区分氧和氮是靠两者被吸附的速度差,通过控制吸附时间来实现的,将时间控制的很短,氧已充分吸附,而氮还未来得及吸附,就停止了吸附过程。因而变压吸附制氮要有压力的变化,也要将时间控制在1分钟以内。
深冷空分制氮原理